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Abstract 
The booming mobile imaging market is aggressively pursuing 

CMOS imagers with higher spatial resolution and smaller form 
factors. Given a fixed die size, reducing pixel size seems like a 
straightforward way to increase spatial resolution. The reduced 
sensitivity of smaller pixels, however, must be compensated by 
longer exposure durations. Longer exposure durations result in 
camera motion blur when the camera is handheld, effectively 
reducing spatial resolution. We empirically measured how the 
exposure duration, camera mass and subject’s skill level affect 
camera motion.  We then used these measurements to calculate the 
effect that camera motion has upon the system MTF for CMOS 
imagers with different pixel sizes at different scene illuminance 
levels. We described the scene illuminance conditions for which 
imaging sensors with larger pixels produce sharper images than 
imagers with smaller pixel sizes. 

Introduction  
Imaging sensor vendors and camera makers have been 

competing on megapixels and price. The cost of the sensor is most 
dependent on the size of the die, so designers have crammed more 
pixels into smaller dice by shrinking the pixel size. Each pixel has 
a somewhat fixed overhead of space required for circuitry, so as 
the overall size is reduced, the light sensitive area of each pixel 
gets smaller [1,2,3,4].  

As the light-sensing areas become smaller, the signal-to-noise 
ratios get smaller as well. To bring the signal-to-noise ratio up to 
an acceptable level requires a longer exposure [5]. This presents a 
problem for hand-held photography, since a long exposure will 
result in motion blur that limits the resolution of the photograph. If 
the loss in resolution due to motion is greater than the pixel 
sampling resolution, a higher resolution image could have been 
obtained with larger pixels and a shorter exposure.  

This paper considers the tradeoffs between exposure and pixel 
subtense. Film photographers have long used a rule-of-thumb that 
a hand held 35mm camera should have an exposure in seconds that 
is not longer than the inverse of the focal length in millimeters. 
E.g. that a 50mm lens should have an exposure of 1/50sec at most. 
This is a very rough approximation at best, and it does not apply to 
digital photographs. Further, hand shake varies with camera mass 
and photographer. There have been very few studies of actual 
hand-held camera shake, so the rule-of-thumb has been difficult to 
formalize and generalize. 

In this paper, we carefully measure camera motion as a 
function of exposure time. We also investigate how camera motion 
is affected by different photographers and camera masses. We use 
the measurements to calculate the effect that camera motion has on 
the system MTF for CMOS imagers with different pixel sizes at 
scene illuminance levels. We also discuss the applications to anti-
shake system designs.  

Experimental Setup 
To measure the effects of exposure duration, camera mass and 

user’s photography skill level on the amount of camera-shake, 
each subject was asked to take five pictures of a point light source 
(a single LED was imaged to a very small spot with a lens, and 
this spot was placed 9 meters from the test cameras) while holding 
the camera naturally at each exposure duration (twenty-one total 
half-stop apart from 0.01 second to 1 second). Seven unpaid 
subjects (five males and two females, ages from 25 to 50 years 
old) participated in the experiment. All of the subjects had used 
digital cameras prior to the experiment. Two of the subjects had 
used digital cameras extensively prior to the experiment, and they 
are regarded as “expert users” in the following data analysis. Three 
cameras were used in these studies (the high-mass Nikon D70, the 
medium-mass Canon G3 and the low-mass Canon A95) and Table 
1 lists the camera-specific parameters. The room lights were 
turned off during the experiment. 

To maximize the spatial accuracy of the measurement, all 
cameras were set at their maximum optical zoom position (4x 
Zoom for both D70 and G3 and 3x Zoom for A95). Each camera 
was manual focused on the light source prior to the experiment. In 
addition, both D70 and G3 were set to output raw image data 
format to minimize the effect of other in-camera image processing 
functions. 

Table 1: Camera parameters 
Cameras Nikon D70 Canon G3 Canon A95 
Mass (grams) 1251 614 335 
Degree/pixel 0.00644 0.0063 0.0068 
Optical zoom 4X 4X 3X 
Total pixels 3008x2000 2272x1704 2592x1944 
Raw output Yes Yes No 

Results 

Data Analysis 
For each picture, we extracted the standard deviation along 

the long axis and the short axis vector of the camera-shake pattern 
using the weighted principal component analysis method [6,7] as 
illustrated in Figure 1. We then used following Equation to fit the 
standard deviation along either the long axis (�L) or the short axis 
(�S) with the exposure duration T: 
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We chose this form because it fits both the random-walk 
pattern (b=0.5) and the straight-line-walk pattern (b=1) and 
camera-shake pattern can be something in between these two 
patterns. To simplify the comparison, we chose exponent b to be 



 

 

the same across all cameras and subjects. An optimal value of 
0.5632 gave the best fit for the averaged standard deviation across 
all conditions (Figure 2) and this provides further evidence that 
camera-shake pattern falls in between a complete random-walk 
pattern (b=0.5) and a straight-line-walk pattern (b=1).  

 

 
Figure 1. An example showing the extracted standard deviation along the 
long axis and short axis on the original image of captured camera-shake 
pattern at exposure duration of 0.5 second. 
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Figure 2. Comparison between the measured standard deviation along 
long axis (star dot) and short axis (circle dot) of camera shake pattern and 
the best fitted value from Equation 1 (where a = 0.1157 for long axis and 
a=0.0472 for short axis). 

Camera Variation 
To evaluate the effect of camera mass on the amount of 

camera-shake, we repeated the same fitting procedure (Equation 1) 
for each camera separately. Table 2 shows the estimated parameter 
a along long axis and short axis for each camera. There is a clear 
trend that the less massive the camera, the greater the amplitude of 
the camera motion (along long axis). This trend is also illustrated 
in Figure 3. Since most camera phones are less massive than the 
least massive camera used in this study (335 grams), we would 
expect camera-shake to be an even more serious problem for 
camera phones. 

Table 2: Estimated values of parameter a along the long and 
short axis cameras with different mass.  

Cameras D70 G3 A95 
Mass (grams) 1251 614 335 
Long-axis 0.092 0.1218 0.1333 
Short-axis 0.0453 0.0445 0.0520 
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Figure 3. The effect of camera mass on the standard deviation of camera-
shake along: (top) long axis and (bottom) short axis. 

Expert vs. Non-Expert 
To evaluate the effect of subject’s photography skill level on 

the amount of camera-shake, we repeated the same fitting 
procedure for the expert group (two subjects) and the non-expert 
group (five subjects). The optimal values of parameter a for these 
two groups and each camera are shown in Table 3. Again, there is 
a clear trend that skilled photographer tends to hold the camera 
more stable than less skilled photographer and the difference 
grows when the camera becomes lighter. It is also interesting to 
note the difference also grows with exposure duration while the 
difference is ignorable for exposure duration shorter than 0.04 
second (Figure 4). 



 

 

Table 3: Estimated long axis parameter a for subjects with 
different photography skill levels. 

Cameras Nikon D70 Canon G3 Canon A95 
Expert 0.0544 0.0727 0.0785 
Non-expert 0.1071 0.1414 0.1553 
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Figure 4. Effect of subject’s photography skill level on the standard 
deviation of camera-shake along: (top) the long axis and (bottom) the short 
axis. 

Applications 
In this section, we show the applications of the camera-shake 

measurements into the pixel size tradeoff analysis and the potential 
use of these data for anti-shake algorithm design. 

Camera-Motion and Pixel Size Tradeoff 
Based on the camera-shake model (Equation 1), we used the 

ISET toolbox [8] to evaluate how the amount of camera-shake 
affects the effective 50% system MTF cutoff frequency of sensors 
with the same die size (1/4 inch for example) but different pixel 
size (from 7.4 um to 1.7 um) at different illuminance levels (from 
10 Lux to 10000 Lux). To simplify the analysis, monochromatic 
sensors with a diffraction limited lens (F#=2.8) were assumed and 

Table 4 shows other sensor parameters used in the simulation. For 
each condition, the exposure duration is set to achieve the same 
SNR level for a 20% reflectance gray Lambertian surface in the 
scene for sensors with different pixel. Therefore, sensors with 
smaller pixel size will need longer exposure duration and thus 
introduce higher amount of camera-shake. Two targeted SNR 
levels (30dB and 20dB) were used in this simulation where noise 
is barely visible at 30dB SNR [5] and is visible but not very 
objectionable at 20dB SNR. For the camera-shake model, we 
chose the estimated parameters for the non-expert group using the 
lightest A95 camera for the simulation.  
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Figure 5. Camera-motion effected system spatial resolution at different light 
levels for sensors with the same die size but different pixel size at targeted 
SNR level of: (top) 30dB and (bottom) 20dB. 

For targeted SNR level of 30dB, the simulation (Figure 5) 
shows that 1.7um sensor records sharper pictures than 3.5um 
sensor only when scene illuminance level is higher than 1000 Lux 
(outdoor daylight). In other words, a 5M pixel 1.7um camera 
phone could record a more blurred pictures than a 1.3M pixel 3.5 
um camera phone for most indoor light conditions (less than 1000 
Lux) unless the amount of camera-shake can be greatly suppressed 
through electrical/optical stabilization mechanism or shooting with 



 

 

tripod. However, if we lower the SNR requirement to 20dB, then 
the spatial resolution advantage reverses at scene illuminance level 
around 100 Lux. With the addition of other noise sources and the 
amplification of existing noise by the image processing pipeline, 
too low level of targeted SNR at the sensor output should be 
avoided. 

Table 4: Basic sensor parameters used in the ISET simulation. 
Pixel size (um) 1.7 3.5 7.4 
Read noise (e-) 10 30 43 
Voltage swing (volts)  0.7 1.0 1.2 
Effective fill factor 50% 50% 50% 
Peak QE (at 550nm) 0.6 0.6 0.6 
Conversion gain (10-6 v/e-) 60 25 13 
Dark voltage (e-/second) 80 150 240 

Anti-Shake Algorithms 
Figure 6 shows how the camera-shake pattern changes with 

the exposure duration from 0.01 second to 0.8 second. For 
exposure duration shorter than 0.125 second, the camera motion is 
close to a straight line. Anti-shake algorithms can take advantage 
of this through the estimation of the direction and length of this 
line and then undo part of the motion. 

 

 
Figure 6. Example showing how the camera-shake pattern changes with 
exposure duration (from left to right and from top to down, exposure 
duration increases from 0.01 second to 0.8 second). 

Summary 
The camera-shake measurement results show that the camera 

motion pattern is somewhat in between the random-walk pattern 
and straight-walk pattern. The relationship between the standard 
deviation of camera motion along the long axis (or short axis) and 
the exposure duration can be efficiently described by Equation 1. 
The lighter the camera, the larger the camera motion tends to be. 
Subject’s photography skill also has a significant impact on the 
amount of camera-shake, especially for exposure duration longer 
than 0.04 second. The difference between expert subjects and non-
expert subjects is also amplified for lighter camera. Based on the 
camera-shake model, we demonstrated (using the ISET toolbox) 

that a 5M pixel 1.7 um camera phone could record a more blurred 
pictures than a 1.3M pixel 3.5 um camera phone for most indoor 
light conditions (less than 1000 Lux) unless the amount of camera-
shake can be greatly suppressed through either electrical or optical 
stabilization mechanism or shooting with tripod. The close-to-a-
line camera motion pattern for exposure duration shorter than 
0.125 second also implies that anti-shake algorithms can take 
advantage of this through the estimation of the direction and length 
of this line and then undo part of the motion. Future improvement 
can be done by using a more complicated mathematical model than 
Equation 1 and the camera-shake measurement for shorter 
exposure durations might also need to be improved through better 
experimental setup. It is also worthwhile to extend this study to 
color sensors.  
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